
Abstract

We model a shock wave in an ideal gas by solving a modified version of the 
compressible Navier-Stokes equations of hydrodynamics, where, following 
an earlier conjecture by Holian [Phys. Rev. A 37, 2562 (1988)], we use the 
temperature in the direction of shock propagation Txx, rather than the average
temperature T=(Txx+Tyy+Tzz)/3, in the evaluation of the linear transport 
coefficients. The results are found to agree much better with the molecular-
dynamics simulations of Salomons and Mareschal [Phys. Rev. Lett. 69, 269 
(1992)] than standard Navier-Stokes theory.
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I. INTRODUCTION

Shock waves in dense Auids are remarkably well ap-
proximated by solving the compressible Navier-Stokes
(NS) equations of hydrodynamics [1,2]. Nonequilibrium
molecular-dynamics (MD) calculations by Holian er al.
[2] and by Klimenko and Dremin [3] for shock waves in
the Lennard-Jones (LJ) fluid were compared to the NS
solution, which requires as input the L3 equation of state
(EOS) (the equilibrium pressure P as a function of inter-
nal energy F. and density p) and the linear transport
coefficients (shear viscosity r)q, bulk viscosity gi, and
thermal conductivity x as functions of p and temperature
T). The EOS was determined from earlier equilibrium
MD and Monte Carlo calculations [4], while the transport
coe%cients were obtained either from previous equilibri-
um MD simulations, evaluating Green-Kubo Auctuation
formulas [5], or from more reliable nonequilibrium MD
simulations of Auxes in response to imposed external fields
[6]. In subsequent work, Holian [7) noted that any dis-
crepancy between NS and nonequilibrium MD shock-
wave simulation profiles, such as particle velocity u(x),
could be at least qualitatively explained by the thermal
dependence of the shear viscosity at the steepest part of
the shock front (located approximately at the point where
u is halfway between initial and final values), since shear
viscosity is the most important of the transport coefticients
in the accurate description of a Auid shock-wave profile.
In all cases thus far simulated (either fluid or solid), the
component of temperature in the direction of shock propa-
gation T~ always exceeds the average temperature T
=(T„+T~~+T„)/3, even exhibiting a peak T = 1.3T
near the middle of the shock front. T is defined by the x
component of the peculiar kinetic energy

N

1VkT„„=g p;„/m, (1)
i=1

where the local Auid velocity has been subtracted from the
momenta of W particles in the thin slab of material
(volume V) in this equation, so that the p; are peculiar
momenta, i.e. , thermal fluctuations only (m is the atomic

mass, k is Boltzmann's constant). At the lower shock
strengths [3], the density and temperature states remain
in the dense-Auid regime, where the shear viscosity de-
creases with increasing temperature; consequently, using
T„„rather than T would lower the viscosity and steepen
the profile. On the other hand, for the strongest shock
wave [2], where the final temperature is sufficiently high
that the LJ system begins to approach ideal-gas behavior,
using T rather than T would increase the viscosity and
broaden the profile. In both cases, the modified NS solu-
tion would more closely approximate reality, i.e., the
nonequilibrium MD results.

Recently, Salomons and Mareschal [8] performed the
first MD simulations of a shock wave in an ideal gas of
hard spheres. The ideal gas regime is very diScult for
MD, since the mean free path /o can become large com-
pared to the molecular size cz. Hence, the simulation re-
quires a large system, whose minimum linear dimension is
many mean free paths. They also undertook to check the
direct-simulation Monte Carlo (DSMC) method of solv-
ing the Boltzmann equation [9]; the results literally could
not be distinguished from MD, confirming the validity of
DSMC. Then, they compared their results (MD and/or
DSMC) to the standard Navier-Stokes shock-wave solu-
tion, and found rather good agreement, though, as in the
strong dense-Auid case, the NS profiles were too steep
when compared to the exact solution (MD). They es-
timated the Burnett correction to the heat Aux, using the
observed MD gradients in velocity, temperature, and pres-
sure, and found that it helped explain the observed devia-
tions from Fourier's Law.

The ideal gas is, in fact, an ideal candidate for testing
Holian's conjecture (that T„„should be used in a modifi-
cation to Navier-Stokes theory, rather than T), since a
self-consistent solution is possible; that is, there is no am-
biguity about extracting T„„from the normal component
of the pressure tensor P, the general expression for
which is

P„V=g (p; /m+F;„x;) =NkT + gF; x; . (2)
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For the ideal gas there is no potential contribution, only
kinetic (F;„=0),so that P„„=pkT„„/m (the mass density
is p=Nm/V). In the next section, we review the NS
equations as they apply to a planar shock wave, exhibit
the EOS and transport coefficients for an ideal gas, and
outline the solution method for the modified NS equa-
tions, where T „replaces T in the thermal dependence of
the transport coefficients. Finally, we compare the modi-
fied Navier-Stokes solution to molecular dynamics and
conclude with some comments.

heat flux vector is zero. Thus, Eq. (4) becomes

p(x)u(x) =poup=p~u ~,

P„„(x)+ppu pu (x) =Pp+ ppu$ —P }+p[ u [,

E()+-,' '()+ "" +'()P„„(x)
p(x) ppup

P0 [ 2 P]
0+ 2 ~0+ ~i+ 2 ~i+

Po p&

II. BEYOND THE NAVIER-STOKES LEVEL

The Navier-Stokes equations of hydrodynamics [10]
are given by the conservation (continuity equations) of
mass, momentum, and energy in a volume element (the
mass density is p, u is the fiuid velocity, P is the pressure
tensor, E is the internal energy per unit mass, i.e., exclud-
ing the kinetic energy associated with the Auid motion,
and q is the heat flux vector),

+V (pu) =0,
Br

8(pu) +V (puu) = —V P, (3)

[p(E+ —'u )]+V [p(E+ —,
'

u )u] = —V (u P+q),

p(x) u (x) =const,

P„„(x)+p(x)u'(x) =const, (4)

p(x)[E(x)+ —,
' u'(x)lu(x)+u(x)P (x)+q(x) =const.

where the Navier-Stokes constitutive equations specify a
linear relation between momentum flux (pressure tensor
P) and components of the rate-of-strain tensor Vu, as well
as a linear relation between the heat Aux vector q and the
temperature gradient VT (Fourier's law of heat conduc-
tion). Note that in the solution of Eqs. (3) for any practi-
cal hydrodynamics problem, the local equilibrium temper-
ature T has to be obtained by inverting the equation of
state. That is, the hydrostatic pressure P is obtained from
p and E in Eqs. (3), whereas in the usual representations
of the EOS, P and E are expressed in terms of the in-
dependent variables p and T. (Similarly, the linear NS
transport coefficients are usually expressed as functions of
p and T. )

For a planar shock wave, such as that generated by a
piston pushed in the x direction at a steady velocity into a
material initially at rest, the overall motion is one dimen-
sional. When the shock wave achieves a steady profile,
due to the dissipative efl'ects of viscosity (in fluids) and
thermal conductivity, the partial time derivatives vanish,
and the conservation equations simplify

where the latter relations between initial and final equilib-
rium states are the Rankine-Hugoniot jump conditions.
We interpret the initial and final velocities for this steady
shock wave as follows: A piston, pushed from the right at
a steady velocity —

u~ into material initially at rest, gen-
erates a shock wave moving to the left, out in front of the
piston, at a steady velocity —u, . We can ride along with
the shock front by adding u, to all velocities; in this coor-
dinate system, the location of the front is fixed at x =0,
with cold material rushing from the left (x«0) toward
the piston at Quid velocity u0=u„while the hot material
stagnates against the piston, receding to the right (x)&0)
at velocity u ~

=Qs Dp.
The Navier-Stokes constitutive equation relating the

pressure tensor to the strain rate, i.e., gradient of the ve-
locity u', is (P is the hydrostatic pressure, or —, the trace
of the pressure tensor)

P„„(x)=P(x) —gL(x) u'(x),

4
gL gV+ 3 VS'

q(x) = —Ir(x) T'(x) . (7)

Thus, the one-dimensional NS equations for momentum
and energy in a steady shock wave become

P(x) —qL(x) u'(x) =Po+ pouo[uo u(x) l, —

E(x) — =Ep+ 2 [uo —u(x)la-(x) T'(x)
PPQ0

+ [uo —u(x)] .
Po

P0D0

Specializing to the case of the ideal gas, the EOS is

P(p, T) =p kT ( ) 3 kT
, Ep, T

and the Navier-Stokes transport coefficients for hard
spheres of diameter ~ are given by

where the longitudinal viscosity gL is a combination of
bulk eely and shear gs viscosities. Fourier's law relates the
heat fiux to the temperature gradient T' by

The initial unshocked equilibrium state will be labeled by
subscript 0, while the final shocked state far behind the
shock front is at a hotter, denser equilibrium state, which
will be labeled by subscript 1. Both equilibrium states are
characterized by zero gradients, so that the normal com-
ponent of the pressure tensor (in the direction of shock
propagation) is equal to the hydrostatic pressure, and the

gy(p, T) =0,

( )
Sm kT

xm

' ]/2
Sm kT

gL 12~2

r i ]/2
75k kT 45

K(p, T) =
gL ~

64~2 xm 16 m

&/2

(lo)



'i ~ li' ll ~f ~ j I 1i!1 1! l! II .
'

ll I ~ Il II.I I !w

R26 HOLIAN, PATTERSON, MARESCHAL, AND SALOMONS 47

Note that the ideal-gas bulk viscosity is zero, and that
both the shear viscosity and thermal conductivity increase
with the square root of the temperature.

If we define the origin such that u (x =0) = (up+ u ~)/2,
then scale x by a convenient factor I (which will turn out
to be close to the mean free path lp of the initial state of
the ideal gas), scale density by its initial value pp, and
scale the fluid velocity by the shock velocity Qp = M, :

R(s)=, s=—,p(x) x
pp

'
l

u(x), du dn dse(s) = u'(x) = =up
Qp dx ds dx

' e'(s),
l

kT( ) kT, (x)

then the standard NS equations [Eqs. (8)] for a steady
shock wave in the ideal gas become

N(s) =

V(s) —'T' (s)n'(s) ='Tp+1 —n(s)
7 „„(s)

n(s) e(s)
—,
' V(s) ——'„' 7' '(s)'T'(s) = -', Vp+ —,

' [1 —e(s)] '

+V, [1 —e(s)1.
(12)

The definition of l in these rescaled NS equations is
chosen to be

l= 5m

12pp(T WÃ

5

12
42zzlp = 1.04lp, (13)

where lp is the mean free path in the initial state of the
ideal gas of hard spheres.

Finally, to go beyond the Navier-Stokes level according
to Holian's conjecture, we replace T in the transport
coefficients by T„, i.e., wherever T' appears in Eq.
(12), we replace it with 7'/ = [e(g p+ 1

—e)] '/:

—[e('Tp+ 1
—e ) ] ' n' =Tp+ 1

—e,
-', v ——'„' [e(vp+ I —e)]'"v'=-', vp+ —,

' (I —n)'
+5'p(1 —n) .

(14)

In order to solve Eqs. (12) or (14) numerically, we start
integrating at the hot piston end (remembering that heat
fIows naturally from hot to cold and that the mathemati-
cal stability is similarly directional [2]). For the purpose
of comparing with the MD work of Salomons and
Mareschal [8], we make the reasonable and simplifying
assumption that the initial temperature is zero, i.e.,
Tp =0 Ep=0 and Pp =0; hence, from the Hugoniot re-
lations, e~ =

4 (~%~ =4) and 7'~ = —,'6 . A simple first-
order diAerence scheme is adequate, with starting values
O'=VEi+6x10 and T =Xi, and an integration step of
As =10
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FIG. 1. Velocity profile u(x) (in units of up=u, ) vs position x
[in units of l, see Eq. (13)] for a shock wave in an ideal gas:
standard NS (dashed line), modified NS (solid line), and MD
(circles); the shock thickness A/l is, respectively, 1.53, 2.08, and
2.35 [Z = —u, /u'(0) l.

III. COMPARISON OF MOLECULAR DYNAMICS,
NA VIER-STOKES THEORY, AND BEYOND
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FIG. 2. Density profile p(x) (in units of po) vs position x (in
units of I) for a shock wave in an ideal gas: standard NS
(dashed lines), modified NS (solid line), and MD (circles).

As can be seen from Eqs. (12) and (14), the velocity
and temperature profiles are the independent ones, since
the normal component of the pressure tensor and the den-
sity can be easily obtained from the velocity. The velocity
profile is shown in Fig. I for MD (DSMC) nonequilibri-
um computer experiments, standard NS theory, and the
modified NS theory. For Auids, the velocity profile exhib-
its a great deal of symmetry, and the maximum slope
occurs at the shock front (x =0). Consequently, the
shock-wave thickness can be defined by X= —u~/u'{0),
which is much more closely approximated by the modified
NS theory (namely, 2.08l, compared to the exact MD
value of 2.35l; in comparison, the standard NS value is
1.53l). In Fig. 2, the density profile (inverse of the veloci-
ty) is displayed. In Fig. 3, the normal P and shear
z =(P,„—Pi~)/2 pressure-tensor components are shown.
The ratio of the total rise in pressure to the maximum
shear pressure P~/zm, „ is roughly 6 in all cases, compared
to about 10 in the dense fiuid and solid [7]. In these first
three figures, the principal remaining discrepancy between
MD and modified NS is in the hot end, rather than the
cold end.

The average temperature T and the normal component
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FIG. 3. Normal component of pressure tensor P„„(x) (in
units of pouf) vs position x (in units of l) for a shock wave in an

ideal gas: standard NS (dashed line), modified NS (solid line),
and MD (circles); also, shear component r =(P „—P»)/2 The.
ratio of the final pressure rise P] to the maximum shear pressure

,„ is, respectively, 5.4, 5.4, and 6.0.

FIG. 4. Average temperature T =(T„+T~&, + T„)/3 (in
units of mu$/k vs position x (in units of l) for a shock wave in

an ideal gas: standard NS (dashed line), modified NS (solid
line), and MD (circles); also, normal component of temperature
T„„. Note that in both standard and modified NS, T„exhibits
a peak of 4, which is -', the final temperature.

T~ are displayed in Fig. 4. Perhaps the clearest sign of
superiority of the modified NS theory is seen here, name-
ly, in the agreement of the gradient T' and in the width ofT, when compared with the nonequilibrium MD. Nev-
ertheless, the MD simulations exhibit a longer relaxation
time in the approach tw the final temperature Ti than is
seen in either standard NS or the modified version. It is
clear, however, that the modified NS captures this relaxa-
tion phenomenon more faithfully than the standard NS
theory.

IV. CONCLUSIONS

We have modeled shock waves in the ideal gas, using
both Navier-Stokes theory and a modification based on a
conjecture by Holian, namely, that the temperature in the
direction of shock-wave propagation is superior to the spa-
tially averaged value when evaluating the linear transport

coeScients, and compared them with exact molecular dy-
namics and direct simulation Monte Carlo (Boltzmann
equation solution). It appears that on the hot side of the
shock front, there is yet an additional relaxation mecha-
nism beyond that predicted by the modified version of the
N avier-Stokes theory.
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