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We derive simple expressions for the energy corrections to the Born-
Oppenheimer approximation valid for a harmonic oscillator. We apply these 
corrections to the electronic and rotational ground state of H2

+ and show that 
the diabatic energy corrections are linearly dependent on the vibrational 
quantum numbers as seen in recent variational calculations [D. A. Kohl and 
E. J. Shipsey, J. Chem. Phys. 84, 2707 (1986)].
for the/-doubling and torsional splitting parameters.

A high resolution diode laser absorption spectrum of the v,j RQ0 branch
of Cell6 at 822 cm -1 reveals a rotational progression with anomalous spacing
and intensity, which is shown to be a result of both/-doubling and torsional
splitting of rotational levels, both of which give rise to a J(J+l) energy
dependence. From a contour analysis of the spectrum we estimate values
for the/-doubling and torsional splitting parameters.
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In this paper, we derive rather simple formulas for the
wave-functions and energy corrections to the Born-
Oppenheimer approximation for a harmonic oscillator.
We derive a coupled pair of equations for these correc-
tions. These equations are valid to first order in the
particle-to-oscillator mass ratio m/M and are the time-
independent analog to the time-dependent equations for a
forced oscillator. Such time-dependent treatments have
recently been described for a particle in a box with oscil-
lating walls (the quantum Fermi accelerator) [1,2] and a
particle in a harmonic potential with an oscillating spring
constant [3]. For slow oscillations compared to the parti-
cle motion, this paper describes the corresponding time-
independent treatment for the coupling between the par-
ticle and oscillator, which is ignored in the Born-
Oppenheimer approximation. Our wave functions may
be derived from a recent work by Babb and Dalgarno [4]
if one applies their diabatic coupling operators to a
harmonic-oscillator basis. However, we give here an in-
dependent derivation for both wave functions and ener-
gies in a harmonic-oscillator basis that simplifies the re-
sults in Ref. [4] and that shows an important connection
between time-dependent and -independent perturbation
theory.

Our theory is particularly useful for describing the
electronic-vibrational coupling in molecules and solids.
To show its usefulness, we apply it to vibrational states of
the H2+ electronic and rotational ground state. Recent-
ly, Kohl and Shipsey [5] have shown from a variational
treatment that the diabatic energy corrections to the H2
electronic ground states are linearly dependent on the vi-
brational quantum number n (at least up to n =2). This
behavior is shown to be a direct result of our treatment
and is seen in other variational studies as well [6—8].

Let us first consider the standard treatment of Hz+ in
the Born-Oppenheimer approximation. For simplicity,
we shall assume that the center of mass is between the
two nuclei and shall ignore the mass corrections that give
the proper dissociation energy [9]. Our interest here is in
the vibrationally dependent diabatic corrections that are
more difficult to obtain. Because the electron moves
much faster than the nucleus, we may consider the nuclei
to be fixed with internuclear distance R = IRI in order to
determine the electron wave function. If r is the position

of the electron relative to the center of mass, we may
write the total wave function as a product of the electron
wave function hatt(r, R ) and nuclear wave function p(R),
or

(T, + V, )f; =W;(R)Q;, (2)

where T, is the kinetic-energy operator for the electron
and where the potential between the electron and protons
is given by

V, = —e /Ir —R/21 e /Ir+R/21 . (3)

Schrodinger's equation for the electronic ground state
O'=PoP is then

g2

2M

a2

BR
go+ [e /R + Wo(R ) ]PoP =Ego/,

(4)

where we have ignored the terms (8 Po/c)R ) and
(Bgo/BR )(c)tI)/c)R ). In atomic units, the electron mass is
m =1 and the proton reduced mass is M=918. We see
that the electronic energy 8'o acts like a nuclear poten-
tial. The total nuclear potential for the electronic ground
state is then

V~(R) =e /R + Wo(R),

which is approximately a Morse potential. This potential
is nearly harmonic at the equilibrium position where

BV~(Ro)
BR

=0

Near the equilibrium position corresponding to the
lower vibrational states, the solution to Eq. (4) is then

2M
+ V~(R )P„=E„P„, (7)

where the vibrational energy is given approximately by

ql=g(r, R)P(R) .

We can make a guess for 1((r,R). We find the solutions
to Schrodinger's equation for fixed R,
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E„=W'0(R0)+A'co(n + —,
'

)

and the vibrational states P„are the harmonic-oscillator
Hermite polynomials.

We now consider corrections to the Born-
Oppenheimer approximation resulting from the terms ig-
nored in Eq. (4). We use the notation ~i ) =1(;. To first
order the diagonal energy correction for the ground state
1s

2M

which is referred to as the adiabatic correction. Note
that the term (Bg/M)(BP/M) has no diagonal electron-

I

ic matrix elements because

B(i[i)~ ~

BR BR
(10)

from conservation of normalization. On the other hand,
this term dominates for the off-diagonal matrix elements
because, for M &)m,

c} amax ))maxM M

Let us use the notation 1(i;p„=~i, n ) . To first order the
contribution of the term (Bg/M)(BQ/M) to the
ground-state wave function is

a~ x (.
) in) (a E;„), — (12)

where E; „ is the energy of state )i, n ) and Eo 0
=E. The—corresponding second-order energy correction is then

r (
~

2

E(2)— aii, aa,
~M BR BR

(E E;„) . —

This expression cannot be readily simplified because the
integral over r, (i ~8/0/BR ), is dependent on R. The
summations above are not practical for numerical calcu-
lations. Indeed, if an electronic state ~(i ) is repulsive, the
states )ii, n ) correspond to the proton continuum. In
practice, diabatic corrections that include the term in Eq.
(13) are calculated variationally with a large basis set
[5—7].

We now derive much simpler expressions for the
ground-state corrections %""and E' ' which are compu-
tationally tractable and give more insight into the phys-
ics. We show that, like the Born-Oppenheimer wave
functions, the wave-function corrections can also be
separated into electronic and vibrational parts. The elec-
tronic energy corrections can then be considered as a po-
tential for the vibrations. As we did for the Born-
Oppenheimer states themselves, we will first make a guess
for the wave-function corrections and then verify that
they obey Schrodinger's equation. For the ground-state
wave function, we let

B()) „
+n —14n —1 n 4'n +1 (15)

where

IC„=&Mco(n + 1)/2A',

so that

(16)

ay,
aR=
ay,
M =&040—&)4'2.

(17)

where (t)0 and P, are the first two vibrational states of the
ground electronic state. We put this wave function 4
back into the full Schrodinger equation and solve for g( '

and 1''". But first we make use of the relation for the
harmonic-oscillator wave functions:

qi —q(o)y +q(1)y (14)
The full Schrodinger equation with all terms except

those with Pz is now

(T, + v, )y( )y, 0—
A'~K()

M BR

f2
2M

~z (0)

y, +(z., + v, )y("y, +
&'&o gq(0)

aR

g2

2M

g2q(1)

M
g2

2M

a2
q(0)

BR

fi

2M

' '

a'y, q'"+(e /R)e=E'e .
BR

(18)

We now make a guess at the solution of Eq. (18). Let us solve the coupled pair of equations below for P( ' and g(" at
a given R:
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(T, + v, )q")— AKp gy(1)

BR
fi

2M

g2y(P)

()R
= Wp(R)y(P), (19a)

(T,+ v, )y("+
&'&o gy(p)

BR

g2@(1)

BR
=( Wp(R) —A'(o')g("; (19b)

then a solution to Eq. (18) will be

2M

a'y,
BR

+( W(')+e /R)(t)p=E'Pp,

g2

2M

Q2p
+(W()+e /R)P[=(E'+Ap)')P] .

(20)

There will also be a change in Rp and co due to first- and
second-order terms, respectively, in this expansion. So,
to find the energy correction in E, we need only to find
the corresponding correction in 8. Note that the hierar-
chy established for the Born-Oppenheimer approxima-
tion where

~ Wp~ &&A'(o is also applicable to the correc-
tions where

E'=E+ [ W()(R() ) —W()(R() )] . (21)
I

The reader can verify that Eqs. (19) and (20) are indeed
solutions to Eq. (18) by direct substitution. We caution
the reader that Eqs. (19) and (20) cannot be deriued from
Eq. (18) by Projecting with (I)p or P[ and integrating over
R because g also depends on R. For M infinite we get
back the ground-state Born-Oppenheimer solution in Eq.
(2) with f( ) =(tjp, g")=0, and WI) = Wp in Eq. (19), so
that co'=ri) and E'=E and the vibrational equations (20)
are the same as (7). For finite M, Eq. (19) depends on the
A'p)' from Eq. (20), whereas Eq. (20) depends on the Wp
from Eq. (19). In principle, these equations can only be
satisfied simultaneously if we iterate to convergence. In
practice, both 8 p and cu' are insensitive to the small
differences from the Born-Oppenheimer values of 8'p and
co, and no iteration is necessary for H2+ for accuracy to
order 0 (1/M ). If we expand E' in R about the equilib-
rium distance R p, to zeroth order in R we find

i WI)
—

W() i

»A' (p' —(()i, (22)

and this is why Eqs. (19) and (20) are rapidly convergent
and also why our guess is correct.

Physically, this means that the electrons not only
respond to the protons' positions, but also to their "ve-
locities"

V„=AK„ /M, (23)

giving rise to the diabatic electronic energy corrections
Wp Wp found from Eq. (19). The protons then respond
to these corrections as an R- dependent effective potential
added to Wp as seen from Eq. (20). We caution the
reader that there are diabatic corrections due to the finite
mass of the nuclei, which we have ignored because they
are independent of vibrations.

We can now solve the coupled pair of equations [(19)]
to find the perturbed electronic wave functions f' ' and
g"). From first-order perturbation theory we have

(I z 0) i) (IVO —IV;) (24)

and

Q'"= —A'Vp g i 0 i [W() —(W;+)]ip))] .
a

( ~p) BR
(25)

The wave-function correction g"' is of order O(1/M). One can show that the next-highest-order term, (t)' '()[)2, would
be of order O(1/M ), and we are justified in omitting the ()[2 terms in Eq. (18). These wave functions may be derived
from the coupling operators of Ref. [4] applied to a harmonic-oscillator basis if we let (()=0. The first-order energy
correction or adiabatic correction is the same as Eq. (9).

The second-order energy correction is the sum of two terms due to P( ' and P") given by

~(2)—E(2) E(2) +E(2)
0

where, respectively,

( W()
—W, ) (26)

and
2

E[ '=(EVD) x i D) [IVD —
( W, +I(m)] .cl

( ~p) BR
(27)
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TABLE I. Diabatic corrections {in cm ) and their fit to the form a +b {2n + 1).

Ref. [8] Fit Ref. [7] Fit Ref. [6] Fit Ref. [5] Fit

n=0
n=1
n =2
n =3
n=4

—0.050 —0.050 —0.1321
—0.140 —0.140 —0.3319

—0.5068

—0.1363
—0.3236
—0.5110

—0.1296
—0.3192
—0.4918
—0.6968

—0.1282
—0.3156
—0.5031
—0.6905

—0.129
—0.316
—0.502
—0.636
—0.728

—0.129
—0.316
—0.502
—0.689
—0.875

—0.005
—0.045

—0.042 58
—0.093 68

—0.034 51
—0.093 71

—0.0362
—0.0932

These energies can be readily derived from Eq. (19a) by
applying (0~ and integrating over the second-order terms
using Eqs. (24) and (25). The second-order energy correc-
tion Eo ' due to g' ' will be much smaller than E', ' due to
P[", as already discussed. To our knowledge, these sim-
ple energy corrections have not been derived previously.
These results are not surprising. For co=0, Eq. (25) gives
the steady-state admixture (except for phase) of excited
states to the ground state from time-dependent perturba-
tion theory for protons moving with velocity Vp. Equa-
tion (27) is then the corresponding energy correction for
this admixture. This is an obvious result of time-
dependent perturbation theory derived from the term

i' i =i%Vp i (28)

One may readily generalize these results to find the
corrections for the nth vibrational state of the electronic
(and rotational) ground state $0$„. We simply let

y —y[0]y +y[1]+y +q[1]—y (29)

where the corrections f["+ and g"' are of order
O(1/M). The wave-function P[ ' and energy correction
Ep are the same as before. The second-order energy(2)

correction corresponding to Eq. (27) becomes

E, ' '=(EV„) X i D)
~ a

(wo)
[IVc —(IV, +Ecc)]+(EV„,) g I D)

I (WO)
[ W[] —( W,. —A'co )],

or, letting Wo —W, +]]leo- Wo —W; and using Eqs. (16) and (23), we find

2

E, ' '-[(2n+l)A' co/2M] g i 0
a

~ (~p) M (Wo —W;), (30)

(31)

and the diabatic energy corrections for H2+ are negative and depend linearly on the vibrational quantum number n as
found by Kohl and Shipsey [5].

If we fit the diabatic energy corrections in Refs. [5]—[8] to the form a +b (2n + 1), then the slope is given by
2

[4 (cm ')]=E /[(12c+1)hc] —(I)cc/4c'cM) X i D) (IVc IV) .
a

~

(~p) BR

I

Similar sums have been recently evaluated by Babb and
Shertzer [10],but they are beyond the scope of this work.
In Table I we show the slope derived from separate least-
squares fits to the diabatic corrections of Refs. [5—8].
The fitted slopes from Refs. [5—7] are in very good agree-
ment and clearly show the linear dependence on 2n + 1 to
the accuracy of the variational calculation. Only the erst
three vibrational levels in Ref. [5] were used in the fit in
Table I because the rapid deviation from linearity for
n &2. On the other hand, the fit of the first three levels
in Ref. [5] is exactly linear and in excellent agreement
with the fit of Ref. [6].

The sum in Eq. (31) is very slowly converging because
(8/BR )~0) is discontinuous at the protons, whereas the

wave functions ~i ) are continuous. This accounts for the
overestimation of b in Ref. [8], where only a few electron-
ic states above the ground state were used. In fact,
evaluating only the first term in Eq. (31) for the ground
state 1s coupling to the 2s state gives b = —0.040, in
close agreement with the value of Ref. [8] in Table I, and
also gives an estimate for the order of magnitude of b.

The author is grateful for helpful discussions with Dr.
W. Harter, Dr. R. Wyatt, Dr. D. Kohl, Dr. R. Pack, Dr.
J. Kress, Dr. R. Walker, Dr. K. Lackner, and Dr. J.
Louck.
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