
Abstract

Fundamental T(ν3) type high-J rovibrational fine structure is derived for a range of 
values of the Coriolis and [2×2]4 centrifugal constants. The theory of level clusters is 
developed further. Correlations are made between cluster states corresponding to well 
separated P +, Q 0, and R - branches, and the opposite case in which Π± and Σ0 labels are 
appropriate.
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Fundamental T(v 3) type high-J rovibrational fine structure is derived for a range of values of the Coriolis 
and [2 X 2)4 centrifugal constants, The theory of level clusters is developed further. Correlations are made 
between cluster states corresponding to well separated P +, Q 0, and R - branches, and the opposite case 
in which n ± and ~o labels are appropriate, 

I. INTRODUCTION 

The treatment of the complex fine structure in spheri
cal top molecular spectra has become increasingly im
portant due to interest in isotope separation1 and new 
types of spectroscopy. 2 This article is one of a series3- 9 

which treats a new approximate procedure for spectral 
analysis based on the theory of level cluster states. To 
put the present work in context, a brief introduction to 
the history of the problem and previous work is given. 

The rotational fine structure in infrared spectra of 
methane (CH4) was first resolved by Plyler et al. 10 in 
1959. A theory for CH4 spectra has been given by 
Louck, by Hecht, and by Moret-Bailly, 11 based partly 
on earlier work by Jahn12 and others. However, until 
recently it has not been possible to study as much detail 
in the corresponding spectra of most other spherical top 
molecules. The small moment of inertia of CH4 makes 
its spectral resolution easier than it is for the "heavy" 
tops. In addition the spectra of the heavy tops tend to 
be dominated by fine structure levels belonging to higher 
angular momentum J. [The most populated level has 
approximately J = (kT /B)1I2.] The complexity and com
putational difficulty of the standard theory increases 
rapidly with J. 

Recently, the advent of laser diode techniques l3 has 
increased spectral resolution by orders of magnitude. 
The application of these techniques has led to the identi
fication of hundreds of lines in rovibrational spectra of 
SF 6, CF4, and other heavy molecules. 14,15 Furthermore, 
these results have stimulated the development of a new 
theoretical approach which is more convenient for dis
cussing high J states. The new approach is based upon 
the observation of energy level "clustering" within the 
fine structure spectrum of SF6 and in computer model 
eigenvalue distributions. 16 

Clustering had been noticed earlier by Lea, Leask, 
and WOlf17 in crystal field splitting computations, and by 
Dorney and Watson18 in computer diagonalization of 
model CH4 Hamiltonians. A classical explanation given 
by Dorney and Watson tells why the most clusters have 
sixfold or else eightfold degeneracy. One imagines that 
a tetrahedral or octahedral top undergoes stable classi
cal rotation around one of its six fourfOld symmetry 
axes, or else around one of its eight threefold axes. 

A quantum model developed by Harter and Patterson3- 5 

explains the structure of various types of clusters by 
making an analogy with band theory in SOlids. 6 The 
form of cluster splitting is predicted by a theory of axis 
tunneling or tumbling of the molecule between different 
internal rotation axes. A simple symmetry analysis of 
induced representations (IR) tells which cubic or tetra
hedral IR show up in each cluster. For example the 
four types of fourfold clusters (04), (1 4), (2 4), and (3 4) 

split into cubic IR as follows: 

(c4) =(04) =Al + Tl + E , 

(1 4)=T1 +T2 , 

(24) =A2 + T2 + E , 

(3 4)=T1 +T2 • (1a) 

Each cluster state I (C4) will, in general, be a combina
tion of angular momentum states I r~) for which the in
ternal component (n) on the molecular fourfold axis sat
isfies 

n= c mod4 . (Ib) 

Similarly, three types of threefold clusters (03), (1 3), 

and (2 3) split as follows: 

(c3) =(03) =Al +Tl +T2 +A2 , 

(1 3)=T1 +E+T2 , 

(2 3) =Tj +E + T2 . (2a) 

Each cluster state I (ca) involves combinations of three
fold axial momentum (n) satisfying 

n=c mod3 . (2b) 

By making cluster states the starting point of spheri
cal top theory one can greatly simplify the analysis. 
Roughly speaking a gas of tetrahedral or octahedral 
molecules can be thought of as being composed of two 
different species of axially symmetric molecules. One 
species is rotating around fourfold axes and is centri
fugally distorted into C4 symmetry, while the other spe
cies is rotating about threefold axes and is distorted into 
C3 symmetry. 

Within each species there are subspecies belonging to 
each type of cluster, and depending on how the hyperfine 
splitting compares with the cluster splitting, there may 
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also be octahedral subsubspecies. 7 Using a cluster analy
sis it was possible for the first time -to derive surpris
ingly Simple and accurate algebraic formulas for P, Q, 
and R branches of the Tlu(V3) bands of SF6 around 948 
cm-I and the F 2(V3) bands of CF 4 around 631 cm-I • 8 One 
set of formulas gives fourfold cluster positions while 
another set gives threefold clusters, and together they 
predict most of the rovibronic spectrum correctly to 
within the Doppler width of observed lines. The formu
las are constructed using a perturbation theory in which 
one assumes that the Coriolis parameter BI;; is much 
larger than the tensor centrifugal parameters g or h. 
This is the case for SF s(BI;;==6.28x10-2

, g==-2.46 
x10-s, h==-5xlO-IO) and for CF4(BI;;==-6.7xlO-2, 

go:=-2.65x10-s, h==-1.26x10- 7
). (See Refs. 19a and 

19b). 

In Sec. III of this paper, the (v3) cluster spectrum will 
be examined for cases in which BI;; is zero or small 
compared to the principal centrifugal parameter g (h 
will be assumed zero). A model rovibrational Hamilto
nian including the important centrifugal and Coriolis 
parts will be represented in two different but equivalent 
bases. The first basis (Sec. II) is a cluster adaptation 
of a basis used by Hecht, 11 which we call the weak
coupling (WC) basis, and the second basis (Sec. Ill) will 
be a different one which we have named the Born-Oppen
heimer approximation (BOA) basis. 7 In the WC basis 
the nuclear rotor momentum quantum number N (N is 
labeled R in most other works) is a good quantum num
ber, and this basis is more appropriate for small g/BI;;. 
In the BOA basis the internal vibrational momentum 
component A on the axis of rotation will be a good quan
tum number. As we will see, BOA bases are more ap-

in terms of tensor products, 

[V"I x V"2]~ = L: C:~:~~V:~(rot) V::(vib) , (3e) 
qlq2 

of rotational and vibrational unit tensor operators to be 
defined in Sec. III. We shall not discuss other tensor 
operators such as h[V3 x Vi] or higher order tensors con
sidered by Hecht, 11 since our treatment is only meant 
to illustrate the generic structure of the spectrum. 

In the absence of centrifugal distortion (g=O) the 
level spectrum for (Z == 1) is a comparatively simple 
function of the Coriolis parameter 1;;, as shown by Fig. 
1. Since the centrifugal operator is an internal or body
defined operator, it can couple only those states with 
the same total momentum J. The three levels of rotor 
momentum N = J - 1, J, and J + 1 which have the same 
J are degenerate when BI;; = O. Then a small centrifugal 
operator can effectively mix the three states and thus 
spoil N as a quantum number. 

One may view the "Coriolis splitting" shown in Fig. 1 

propriate for large g/BI;;. In either basis, the cluster 
labels (C3) or (C4) and total momentum (J) == (N + Z) will 
be good quantum labels. 

In a previous article 9 a BOA basis was used to derive 
rovibrational cluster patterns for doubly-degenerate 
E(V2) type vibrations (E vibrations have no first order 
Coriolis type interactions), and so the present work is 
a natural extension to triply-degenerate T or F(V3 4) vi
brations for cases of very high J and/or low i g/B~ I • 
With so many different types of overtonel9c and combina
tion bands being studied in many new types of spectros
copy, it is important to see how energy levels and clus
ters correlate between different extremes in the range 
of the most important centrifugal and Coriolis parame
ters. In addition, we expect that the BOA bases will be 
very useful for unraveling electronic and vibronic bands 
in the future. 

II. COR lOLlS AND [2 X 2] 4 CENTR I FUGAL 
HAMILTONIAN IN WC CLUSTER BASIS 

Consider the following model rovibrational Hamilto
nian 

H M == W + BJ 2 - 2BI;;J· Y + t224n"~(rot) x 0(vib) 14, (3a) 

where our centrifugal constant is g== - (t224/2)VW7. 
The Coriolis part can be written as, 

(3b) 

in terms of squares of total momentum (J == N + Z), nu
clear rotor momentum (N) and vibrational momentum 
(z). Depending on whether one uses threefold or four
fold axis of quantization, the centrifugal operator is rep
resented one of two ways: 

(3c) 

(3d) 

in two ways. On the one hand it can be imagined that 
vibrational momentum (Z = 1) is added to a given rotor 
momentum N to make three components J =N + 1, N, 
and N -1 which split away from each N-Iabeled point on 
the left side of Fig. 1. On the other hand one can imag
ine that (Z = 1) is subtracted from a given J state to make 
three N levelS of nuclear rotor momentum N =J -1, N 
=J, and N = J + 1 which split off from each J -labeled 
point on the right side of Fig. 1 as I;; becomes nonzero. 

Using either viewpoint, one makes virtually the same 
wavefunctions of definite l, N, J, and body axis compo
nent of momentum n. (n is labeled KR or Kc in most 
other works.) By coupling land N one defines the WC 
wave function, 

( 4) 

where <t>!(vib) is an angular vibration function defined in 
laboratory fixed coordinates {xyz}, and r ~"(rot) is a 
rotor wa vefunction, 
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ENERGY 

N=SI -?~------------------~~ J = 61 

s = I 

N=SO-?~------------------~~ J=60 

N = 59 ...-.,j~------------~'- J = 59 

N' 58 ~~---------~~ J = 58 

FIG. 1. (l = 1) Coriolis. energy level trajectories for zero 
centrifugal splitting. 

r~n<rot) =!D~n(a/3Y)*v'[NJ , (5) 

where [N]:o 2N + 1, and !D~n is an irreducible rotational 
matrix component. The wave function in Eq. (4) can 
just as well be written in terms of vibration functions 
q,~(vib) defined in the molecule-fixed coordinates {xyz}, 

cp~ (vib) == "E cp~( vib)!D~A (a /3 y) • (6) 
.\ 

Inserting the inverse, 

cpi(vib) =="E cp~(vib)!DiA(a{3y)* , 
A 

into Eq. (4) and using standard Clebsch-Gordon coeffi
cient relations, 7,20 we obtain the following expression: 

(I [IN](n)~) == ;;CZ;:Kj~~] cp~(vib)r~K=n+A , 

==(_l)N-J "EC~~(-l)Acp:A(vib)1{K.n_A' 
A 

==(_l)N-J L:c~K~ct>~*(vib)1{K=n-A . (7) 
A 

This differs only by the phase (_l)N-J from the wave
function, 

(8) 

in which 1 is "subtracted" from J to give N. The (I [LJ]N) 
wavefunction is in a form for which matrix elements of 
internal operators [Vk1(vib) x Vk2(rot)]~ can be expressed 
in terms of coupling and 9-j recoupling coefficients. 

Following Hecht11 one obtains, 

([l' J']:: I [Vkl( vib) x Vk2(rot) l~ I [LJ]~) 
== C:g,:;' ([l'J']N' II [k1k2]K II [LJ]N)/';[N'] , 

where the reduced matrix element is given by, 

([l'J']N' II [k1k2]K II [lJ]N) = ([N'][N][K])1/2 

. l' kl .. xL: ~i (1' II k, II ~ .. (J' 11 k, II J),,, . 

For the centrifugal operator of interest one needs, 

([lJ]N' II [22]411 [IJ]N) ==3([N'][Nj)1I2 

1 

JJ 
tN' 

1 21 
J 2 \ (1 112 111)vlb(J 112 II J)rot , 

N 4· 
where the 9-j coeffiCient reduces to, 

. 1 1 2 
) 2 ( _ \N' J 3 l \J J 2 1(2.)1/2 
) J J ( - 11 4 N) It 3 N',I 5 
tN' N 4 1 

and the reduced matrix elements are, 

(1112111)vlb == - v'5 , 

(9a) 

(9b) 

(10) 

(11) 

(J 112 II J)rot == [(2J + 3)(2J + 2)2J(2J - 1)/24) ]1/2. (12) 

Finally, by combining algebraic expressions for all the 
angular coefficients we obtain the matrix elements listed 
in Tables I and II for the Hamiltonian in Eq. (3a), where 
we define g:o - (t224 /2)';12/7 . 

As long as B~» g and J has intermediate values, the 
diagonal matrix elements give the energy level clusters 
fairly accurately, 8 and this is called the first-order 
dominant approximation. Then each cluster level is 
labeled by a definite core momentum component (n) as 
well as the cluster label (C4) determined by Eq. (lb), 
the total rotor momentum N, and of course J. Compo
nents N ==J + 1, N ==J, and N ==J - 1 are associated with 
"allowed" P+(N), QO(N), and R"(N) transitions or 
branches, respectively, of the infrared spectrum. (One 
should note that if N is a "good" quantum number, then 
transitions between states of different N, due to exter
nally applied radiation, are forbidden, as explained in 
Ref. 7.) As total momentum J or g/Bt, increases the 
coupling increases between states of different Nand n 
due to off-diagonal N ± 1 and n ± 4 components in Table I. 

A similar matrix exists for rotational states involv
ing the threefold axis (see Table II). The main differ
ence is that states with threefold component n couple 
with those having n ± 3 and correspond to C3 clusters as 
given by Eqs. (2a) and (2b). The diagonal components 
and those relating states of the same n are equal to the 
corresponding fourfold components multiplied by (- 2/3). 

III. CORIOUS AND [2 X 2] 4 CENTRIFUGAL 
HAMILTONIAN IN BOA CLUSTER BASIS 

It is convenient to rewrite the centrifugal operator in 
Eq. (3) in terms of angular momentum operators and vi-
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TABLE I. Upper diagonal of fourfold centrifugal matrix in we cluster basis [g= (12/7)1/2 is chosen]. a 

n n -4 

IN=J+l) IN=J) IN=J-l) IN=J+I) IN=J) 

x J+1(n +4) /(n) 
z(n) 

(2J + 2)(2.1 + 1) [2J(2J + 1)]1/2 

-~J(n+4) _2xJ(n +4) -:l-l(n) 
[2J(2J + 1)]1/ 2 2.1(2J+2) [(2J +2)(2J + 1)]112 

z(n +4) 
yJ-l(n +4) x J-1(n +4) 

[(2J +1)(2J + 2)]112 2J(2J+ 1) 

aJ+1(n) bJ~) 
-c(n) 

(2J + 2)(2J + 1) [J(2J + 1) )1/2 
xJ+l(nl J:J(4 -nl 

(2J + 2)(2J + 1) [2J(2J+l)]1/2 

-2aJ (n) _ bJ -1(n) 

2J(2.1+2) [(J + 1)(2J + 1)]1/2 
_~J(n) _2xJ(n) 

[2J(2J + 1)]1/2 2J(2J+2) 

aJ -1(n) 
2.1(2J+ 1) 

z(n) 
yJ-l(n) 

[(2J + 1)(2J + 2)]1/2 

aJ+1(n -4) bJ(n-4) 
(2J + 2)(2J + 1) [J(2J+I)]1/2 

-2aJ(n -4) 
2J(2J+2) 

"Values of components are given by 

J(n) 5(J2 +J - 2 _7n2)[2(J +n + I)(J +n)(J -n + I)(J _n)]1!2 
c (2J + I)[J(2J + 2) ]1/ 2 

xJ(n) = 5[(J +n)(J +n -I)(J +n - 2)(J +n - 3)(J +n - 4)(J -n + 3)(J -n + 2)(J -n + 1)]1 /2, 

J(n) _ 5[2(J +n)(J +n - I)(J +n - 2)(J -n + 5)(J -n + 4)(J -n + 3)(J -n + 2)(J -n + 1)] 1/2, 
Y (2J+~ 

5[(J +n -I)(J +n - 2)(J -n + 5)(J -n +4)(J -n + 3)(J -n + 2)(J -n +l)(J _n)]1/2 
z(n) (2J + 1)[2J(2J + 2)]1/2 

V;2(vib) = alta,.t , 

V~l = (a~a,. - a!tao)/v'2 , 

IN=J-l) 

z(4-n) 

_yJ-l(4 -n) 
[(2J +2)(2J + 1)]1/2 

x J -1(n) 
2J(2J+l) 

-c(n -4) 

_bJ-1(n -4) 
[(J + 1)(2J + 1)]112 

aJ -1(n -4) 
2.1(2J+ 1) 

bration creation-destruction operators. The three 
octahedral T 1u(V3) type base functions correspondto 
components X, y, and z. However, for angular momen
tum analysis it is convenient to deal with the following 
combinations: 

V~ = (arat - 2a6ao + a!ta.t)/16 . 

yft or F2 = yl- - (x + iy)/v'2 , 
Similarly, the rotational part, 

V 2(rot) = T2 q q , 

4899 

(16) 

Yo=Y~-z , 

y'l = Y:l-(X - iy)/v'2 , 

(13) 
can be built from quadratic products of angular momen
tum operators, 

and we shall define angular creation operators in an 
analogous fashion; 

at = - (a", + ia)/v'2 , 

a6=a. , 

a!1 = (a" - iay)/v'2 . 

However, note that conjugate destruction operators 
(-l)"'a", transform like creation operators a~, i. e., 

(14) 

(- a'l, ao, - al) forms a Ttu basis. Therefore the vibra
tional tensor is computed from 

V;(vib) = LC!!;a!a.b(-l)b , (15) 
a, b 

to give 

Jl =- - (J" + iJy )/v'2 =- -J.lv'2 , 

J~=-J .. , (17) 

J:t =(J" -iJy)/v'2 =-J./v'2 . 

Using Eq. (3e) to assemble the two parts we have, 

[V2XV2]~ =~(T~V~2 + T~2VD 

+ Jft(1iV:t + T:t Vn + ~T~V~ , 
[ 2 2]' Ii T2 V2 Ii '"'- 2 V X V ~3 = '12 ~2 ~t + '12 l;t V~2 , (18) 

[V2 
X V2]!4 = T;2 V;2 . 

The desired expressions for threefold and fourfold 
quantized centrifugal operators are found to be, USing 
Eqs. (3c) and (3d), respectively, 
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and 

[v2
x V2]4 = m{T~(5aJa_l - 5alao - a!lal) + T~2(5a!laO - 5a~al - ala_I) + v'2[T:I (2a!ao - 2a~a_1 - 5a!lal) 

+ Tr(2a~lao - a~al + 5a!a_l) J- v6 T~(aral - 2a~ao + a!la-l)} (threefold axis) , 

[V2 
X V2]4 = {T~(a~lal + 5a!a_l) + T:2(a!a_l + 5a!lal) 

+ 212 [Ti(aJal - a!laO) + T:l(a~a_l - alao)] + v6 T~(alal - 2aJao + a!ta_l)} (fourfold axis) . 

The BOA states will be used as a basis to represent 
[V2 XV2]4. The BOA wavefunction is defined by 7,2o 

transformation matrix in Eq. (21) is written out in 
Table Ill. 

(19a) 

(19b) 

< 1 (BOA)An~) = ct>~(vib)~K=A+n , (20) 

for the (z = 1) vibrations being considered, the compo
nent A on the internal rotation axis can have the values 
A = 1, 0, and - 1, and the corresponding BOA states 
will be labeled n+, ~o, and no, respectively. From Eq. 
(7) we see that the we wavefunction is related by the 
following unitary transformation 

It is probably easier to calculate the Hamiltonian ma
trix directly in the BOA basis rather than transforming 
Tables I and II with Table III. The matrix elements of 
Eq. (19) are found using the standard rules for at, a 
operators on tpeir vibration wave functions ct>A(vib), 

<I [LN](n)~) = ~c~~jgf<1 (BOA)A(n)~) , 

< 1 (BOA)A(n)~) = Z;c'fnfcjWf < 1 [IN](n)~) . 

(21) 

and the following "reverse angular momentum rules" on 
the rotational wavefunctions, 

<r~K'=K+.1 T:. 1 r~K) = C!~~.<J 112 II J) jv'[Ji 

=
(J 2 J) 
\K q -K' (_1)J-K'<JII21IJ). (22) 

Clearly, N is not a good quantum number for BOA bases, 
and neither A nor K = n + A are good for we bases. The 

The reverse rules make it so the Hamiltonian in Eqs. 
(19a) or (19b) will couple the states belonging to (n) only 
to those belonging to (n mod3) or (n mod4), respectively. 

TABLE II. Upper diagonal of threefold centrifugal matrix in WCcluster basis [g=(12/7)1/2 is chosenl. a 

\N=J+l) \N=J) 

~ r'+I(n + 3) ~ uJ(n) 
(2J + 2)(2J + 1) [2J(2J + 1)]112 

-~uJ(n+3) - ttJ(n + 3) 
[2J(2J + 1)]172 2J(2J+2) 

~ v(n +3) 
hJ-1(n + 3) 

[(2J + 1)(2J + 2)]1/2 

_ ~aJ+I(n) - ~ bJ (n) 
(2J + 2)(2J + 1) [J(2J + 1)]1/2 

taJ(n) 
2J(2J+2) 

"Values of components are given by 

n 

\N=J -1) 

-~ v(n) 

_ ~uJ-l(n) 

[(2J + 1)(2J + 2)]1/2 

~ tJ-1(n + 3) 

2J(2J+ 1) 

~c(n) 

h J-1(n) 
[(J + 1)(2J + 1)]1/ 2 

_ ~aJ-l(n) 

2J(2J+ 1) 

\N=J+l) 

(2J + 2)(2J + 1) 

-nuJ(n) 
[2J(2J+l)]1/2 

- ~aJ+l(n - 3) 
(2J + 2j{2J + 1) 

tJ(n) = 10(2n - 3)[2(J +n)(J +n -1)(J +n - 2)(J -n + 3)(J -n + 2)(J -n + 1)]1/2, 

J( ) _ 5(J + 4n - 5)[(Jt- n)(J +n -1)(J -n +4)(J -n + 3)(J -n + 2)(J -n + 1)]1/2 
u n - J+ 1 ' 

() 
5(2J + 4n - 5)[(J +n -1)(J -n + 4)(J -n + 3)(J -n + 2)(J -n + I)(J _n)]1/2 

v n (2J + I)[J(2J + 2) ]172 

(a, b, and c components are given under Table 1.) 

n-3 

\N=J) 

h J (3 -n) 
[2J(2J+ 1)]172 

- ttJ(n) 
2J(2J+2) 

hJ-1(u) 

[(2J+l )(2J+2)]172 

-~bJ(n -3) 
[J(2J + 1)] 1/2 

} aJ(n -3) 
2J(2J+2) 
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TABLE III. n-block of transformation matrix between we and BOA cluster basis. 

IN=J -1) IN=J) 

(D (A=+ol [(J +n)(J +n + 1)1 1/2 
[(J +n + 1)(J -n)J 1/2 

(K =n + 1) 2J(2J+ 1) J 2J(J+ 1) 

(1: (0) I [(J+n)(J-nIJ 1/2 -n 
(K =n) J(2J+ 1) (J(J+l)]172 

(D(_OI [(J-n)(J-n+1'j 1/2 _ [(J+n)(J-n+1)J 1/2 

(K =n -1) 2J(2J + 1) 2J(J+l) 

Only the same subspecies of clusters should be coupled 
by a T d or 0h symmetric Hamiltonian. 

The resulting matrices are given in Tables IV and V 
for three and fourfold clusters, respectively. A con
tinued matrix chain describes one particular subspecies 
of clusters (c3) or (c4), respectively, depending on the 
chosen value of n. For each J there are three different 
threefold chains: n =J + 1, J - 2, J - 5, ... ; n =J, J - 3, 
J - 6, ... ; n=J -1,J - 4,J -7, ... ; and four different 
continued fourfold chains: n =J + 1, J - 3, J - 7, ... ; n 
=J,J - 4,J -8, ... ; n=J -1,J - 5,J -7, ... ; n=J -2, 
J-6,J-10, ... . 

In the following section an approximate spectrum of 
the centrifugal Hamiltonian (gtO, Bt;=O) is derived us
ing perturbation theory on the BOA representation. The 
results indicate that a numerical procedure which just 
diagonalizes a truncated chain of matrices, i. e., just a 
few of the highest (n) blocks, might be very useful, par
ticularly for Bt; to. The BOA representations of the 
centrifugal part are much Simpler than their WC coun
terparts in Table I. While the Coriolis part is not diag
onal in the BOA representation, it is a simple tridiag
onal form which mixes only states of the same (n), as 
shown in Table VI. In any case, either cluster basis 
represents a tremendous Simplification over the full 
(6J+3)x(6J+3) matrix diagonalization which has been 
required in the past for each J. We now compare BOA 
perturbation results with those of the full diagonaliza
tion for the Ttu spectrum with J = 60 and Bt; = 0. 

IN=J+l) 

[(J -n + 1){J -n)J 1/2 

(2J + 2)(2J + 1) 

_ [(J +n + 1)(J -n + I)J 1/2 

(J + 1)(2J + 1) 

[(J+n)(J+n+l)] 1/2 

(2J + 2)(2J + 1) 

IV. CORIOLIS-FREE SPECTRUM OF [2 X 2]4 
CENTRIFUGAL OPERATOR 

We now derive approximate formulas for a Ttu or 
T2(lla) spectrum of the centrifugal Hamiltonian operator 
in Eq. (19), and consider J=60 as an example. Such a 
potentially complex spectrum is made quite simple in 
the cluster basis by our ability to break it .into several 
pieces which can be treated separately. 

In order to see what the pieces of a Ttu spectrum will 
be and how they fit together, one may begin by looking 
at a semiclassical matrix. Consider a (3 x 3) matrix, 

I <pt> I <p~) I <P~t) 

( ~rl - 212 T: t 5r,+r, [2x2J 4 
(23) H.emlclas.lcal = 212 TI - 2v6 T~ 212 T: t ' 

5T:2 + T~ - 212 Ti v6T~ 

which is derived from Eq. (19b) by treating only the vi
brational part according to quantum rules. Then by re
placing each rotational tensor T: by an equivalent spheri
cal harmonic, i. e., by letting 

T;2- (X±iy)2 , 

T;t - 'f 2z(x ± iy) , 

T~-t(2z2_X2_i) , 

one obtains the following matrix: 

(24) 

TABLE IV. Upper diagonal of threefold centrifugal matrix in BOA cluster basis [g= (12/7)1/2 is chosenJ. a 

n 

I D.) I!: 0) 

0 0 

10 J( ) -3" W2 n+3 0 

¥I2W(n+2) ¥ Wf(n+2) 

- ~ W~(n + 1) -t 12Wt<n+l) 

tW~(n) 

"Values of components are given by 

I no) 

0 

0 

0 

-~ Wf(n + 1) 

tJ2 W(n) 

-~ W{(n -1) 

In.) 

o 

-¥ W{(n) 

¥12 Wt(n -1) 

-~ W{(n-2) 

n-3 

o 
o 
¥ W{(n-l) 

- t J2 W( (n - 2) 

tW~(n-3) 

o 
o 

o 
-~ Wf(n -2) 

tJ2 W(n-3) 

-~ W~(n -4) 

W~(n) = 2[3n
2 
-J(J + 1)], W(<n) = (211 -1)[(J +n)(J -n + 1»)\/2, Wf(n) = [(J +n)(J +n -1)(J-n +2)(J -n + 1»)\/2. 
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- 4Y2 z(x - iy) 

_ 4(2z2 _ X2 _ y2) 

4Y2 z(x +iy) 

Finally, it is possible to find approximately the relative 
energy of the high (n) threefold or fourfold clusters by 
setting (x, y, z) equal to a threefold axis (1/v'3, 1/v'3, 
1/v'3) or a fourfold axis (1,0,0), respectively. The 
latter gives eigenvalues 4, 4, and - 8 directly, while the 
former after diagonalization gives eigenvalues - 8/3, 
- 8/3, and 16/3. More interesting, however, are the 
crossover points which one finds by using a twofold axis 
such as (1/v'2, 1/Y2, 0). The twofold eigenvalues work 
out to be 4, 2, and - 6. By plotting these eigenvalues 
as shown in Fig. 2, one may deduce the overall charac
ter of the T 1u spectrum. At the bottom (H = - 8) the 
fourfold clusters begin and run until the crossover point 
at (H = - 6). These clusters will be called the fourfold 
"~ clusters" since the eigenvalue (H = - 8) belongs to 
eigenvector I q,~) of H[2 2J in Eq. (25). Between (H = - 6) 
and (H = 2) there is a long region which is inhabited by 
threefold "n clusters, " and which borders the fourfold 
n cluster region. The spectrum is completed by three
fold ~ clusters on top. The threefold n cluster "start
ing point" is at (H = - 8/3) while the threefold ~ clusters 
start at (H = 16/3). Interestingly, the fourfold n cluster 
starting point lies right on top of the crossover point at 
(H = 4) between threefold ~ and fourfold n. This coin
cidence feature has not been seen in the other cluster 
analyses done so far. 

Now the details of the spectrum inside each region 
are derived and compared to the exact full diagonaliza
tion using Krohn's2j codes for J = 60. 

A. Threefold and fourfold ~ clusters 

The center component of each (n) block in Tables IV 
and V gives the corresponding zeroth-order BOA ~ 

(25) 

level. As n decreases the offdiagonai ~;: n perturba
tions increase significantly, so at least a first order 
perturbation calculation is needed to obtain useful re
sults. For the threefold ~ clusters one may use the 
following, 

W(j )(~, threefold, n) = i W (n) 
gv'77i2 3 0 

+ 16{ [W1(n+l)P + [W j (n)]2 } (26a) 
3 2Wo(n)+Wo(n+l) 2Wo(n)+Wo(n-l) , 

while for fourfold ~ clusters the following is appropri
ate, 

W(1)(~, fourfold, n) __ 2W ( ) 
gf77I2 - 0 n 

a{ [W1(n+l)]2 + [W j (n)]2 } ( ) 
- 2Wo(n)+Wo(n+1) 2Wo(n)+Wo(n-1)' 26b 

In Table vn several zeroth-order and first-order eigen
values are compared with the exact results. As one 
might expect the first-order perturbation over corrects 
slightly. Presumably, second-order corrections would 
bring it back, but we saw no point in obtaining greater 
precision here. 

It is important to see that the qualitative predictions 
are right. The beginning ~ clusters have n = 60. For 
the fourfold case we have 60 = 0 mod4 so a (04) =Al 
+ T 1 + E cluster is expected. This is right according to 
the exact results as shown in Fig. 3. For the threefold 
case one starts with a (03) =At + T j + T2 + Az cluster 
since 60 = 0 mod3. Identifying the outside threefold 
cluster level (W = 19. 26 in Table VIT) with the corre
sponding eigenvalue (H = 16/3) of the semiclassical ma-

TABLE V. Upper diagonal of fourfold centrifugal matrix in BOA cluster basis [g=(12!7)1/2 is 
chosenl. a 

n n-4 

In.) I ~o) I TI_) I TI.) I TI_) 

0 0 0 

0 0 0 

5W!(n+3) 0 0 

W~(n + 1) 2)2 Wf(n+1) W!(n+1) 0 0 0 

- 2W5(n) -2)2 wf(n) 0 0 0 

W~(n -1) 5W!(n -1) 0 0 

Wt(n -3) 2)2 Wf(n - 3) W!(n - 3) 

-2Wt(n -4) - 2)2 wf (n - 4) 

W~(n - 5) 

"Values of components are given in Table IV. 
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T ABLE VI. Upper diagonal of 2(J·1) matrix in BOA cluster 
basis. 

n 

I TI.> I TI_> 

2(n + 1) o [2(J+n + l)(J _n)]t/2 

o [2(J -n + l)(J +n)]t /2 

-2(n-l) 

trix H[2x21 [Eq. (25)] one may predict other singular 
pOints by multiplying the other H values by r=19.26(3/ 
16). One predicts a crossover of the fourfold L to the 
threefold TI at (H = - 6) = - 21. 66 which is seen to be 
exactly right according to Fig. 3. The same goes for 
the threefold TI to fourfold TI crossover at r{H = 2) 
= 7. 22. However, the fourfold TI to threefold L cross
over predicted a r(H = 4) = 14. 44 seems to be about 2% 
low. One might have expected some anomaly at this 
point given the coincidence between twofold and fourfold 
H values. 

B. Threefold n clusters 

The threefold TI clusters have extraordinarily large 
mixing between states I TI.n) and I TI.n - 3) due to the ma
trix element [10v'2W1(n -1)/3]. Hence, the diagonal or 
zeroth-order BOA (n) values will be split apart widely 
in a way that reminds one of the behavior of three three
fold E cluster patterns in Ref. 9. By solving for the 
eigenvalues of the matrix, 

ITI.n) I TI.n - 3) 

s = - 2/3 ( Wo(n - 1) 

- 5v'2 W1(n - 1) 

one' obtains the first-order TI eigenvalue formula, 

-8/3 

-6 ........... . 

-8 ••• +++.+. 

..•••• 2-FOLD CROSSOVER 

~ 3-FOLD I 
eeeee 3-FOLD " 

+++. 4-FOLD I 
:::: 4- FOLD" 

(27) 

FIG. 2. Semiclassical [2x2]4 centrifugal (Tt ) eigenvalues for 
zero Coriolis parameter (H I; = 0). 

20 

10 

5 

o 

-5 

-10 

-15 

-20 

-25 

59~O 
-~---

-30 

FIG. 3. (J = 60, T t ) [2 x 2]4 centrifugal eigenvalues for zero 
Coriolis parameter (HI; = 0). Various approximations are com
pared with the exact eigenvalues. 

W!1)(n) = -~(n -1)(n - 2) +~(J - n +2)(J +n -1) - 2 

±i(2n - 3)[8(J - n + 2)(J +n -1) + 9/50]112, (28) 

where we have set g= (12/7)1/2. 

Note, however, that the state I TI.n=J -I), which in 
the present example is I TI.n = 59), has no strong coupling 
partner. (It would have to be I TI_n = 62) which doesn't 
exist for J = 60.) Since n = 59 = 2 mod3, we have a "lone" 
(2 3) = T1 + E + T2 cluster in the middle of the threefold 
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TABLE VII. Examples of (J '= 60) ~ cluster energies. Com
parison is made between approximate values [Eg. (26) and 
Tables IV and V) and exact computer produced values for g 
= 10.3(12/7)1/2. 

W(O) W(I) W(exact) 

(a) Threefold clusters 

n=60 19.04 19.255 19.2567 
59 18.09 18.741 18.7407 
58 17.15 18.253 18.247 
57 16.25 17.811 17.777 
56 15.33 17.361 17.331 

(b) Fourfold clusters 

n=60 -28.560 - 28. 883 - 28. 881 
59 -27.132 -28.112 - 28. 095 
58 -25.728 -27.379 -27.331 

(J = 60) n pattern. It is perturbed only slightly by the 
threefold 1 ~ n =1- I) state. 

The first "split pair" of threefold n's in J = 60 involves 
a combination of ITJ.n=61) and In.n=58) states, both of 
which belong to (1 3) = Tl + E + T2 clusters according to 
Eq. (2). For Simplicity of calculation we will assume 
that all split-pair eigenvectors are approximately, 

In.>~(ln.n)+ In.n-3»/)2, 

In.)~(ln.n)-lrr.n-3»/)2 , 
(29) 

which is true as long as the diagonal components of 5 
[Eq. (27)1 are nearly equal. This allows one to make 
simpler ~ perturbation formulas. The second-order re
sults (these are actually first-order perturbations) are 
as follows: 

W(2)( )=W<!)()+ 1(~onIHln*)12 + i(~on-31H1n*)12 
"n "n W~!)(n) _ (4/3)Wo(n) W~1)(n) _ (4/3)Wo(n _ 3) 

_ W(1)( ) + 1 (4)2 /3)W1 (n) 'f (10/3)W 2(n) 12 1 (10/3)W2(n - 1) 'f (4V2 j3)W1(n _ 2) 12 
- "n 2[W~i>(n) _ (4/3)Wo(n)] + 2[W~I>(n) - (4/3)Wo(n - 3)] , (30) 

where again we set g= (12/7)1/ 2
• The first and second-order results are compared with the exact eigenvalues in 

Table VIll and in Fig. 3. 

C. Fourfold II clusters 

The behavior of the fourfold n clusters can be ex
plained in terms of the mixing between 1 n. n) and 
1 n.n - 4) states due to the matrix element [5W2(n - 1)]. 
By solving for the eigenvalues of the matrix, 

(31) 

one obtains the first order TI eigenvalue formula, 

W!1)(n) = 6(n2 - 4n + 5) - 2J(J + 1) ± {144(n _ 2)2 

+ 25[(J + n + 1)(J - n + 3)(J2 - (n - 2)2)]P/2, (32) 

where g=(12/7)112. 

Note that the states 1n.J -1) or 1n.J - 2) can have no 
partners ITIj+3) or 1 n.J+2). Hence in our example 
for J = 60 we have two lone clusters for n = 59 = 3 mod4 
and n = 58 = 2 mod4 corresponding to (34) = Tl + T2 and 
(2 4) =A2 + T2 + E, respectively. These two clusters can 
be seen in Fig. 3 very close to the threefold ~ cross
over point. They are only very slightly perturbed by 
the fourfold 1 ~ J - 1) or 1 ~ J - 2) states, respectively, 
as can be seen in Table IX. 

The first split pair is the In.J + 1) and 1 n.J - 3). In 
our example (J = 60), both of these states belong to the 
(14)=T1 +T2 cluster according to Eq. (1). Unlike the 
threefold n case, we cannot assume an equal mixing of 
the split states. In fact, we can associate the 1 TI.n) 
state with the W~1)(n) eigenvalue and the 1 n.n - 4) state 
with the W~1J(n) eigenvalue. That is, 

In.>'" In.nrrturbed=j.J..ln.n)+v.ln.n-4), 

In.> '" I n.n - 4)perturbed = j.J..1 n.n> + 1'.1 n.n - 4> , 
(33) 

where 

j.J..=_v.=x/(x2+y2)1I2 , 

(34) 

and where one sees that usually x» y according to their 
definitions: 

TABLE VIll. Examples of (J = 60) threefold II cluster energies. 
Comparison is made between apprOXimate values [see Egs. 
(28)-(30) and Table IV) and exact computer produced values for 
g = 10.3(12/7)1/ 2 • 

"lone state" 

In=59 II.): W(O)=-9.57 W(1)=-9.75 W(exact)=-9.734 

W(1) 

" 
W(2) 
• W(exact) 

(n,n-3)=(61,58) 
j - 3.14 -3.335 -3.330 
( -15.43 -15.669 -15.657 

(60,57) I -0.30 - O. 687 - O. 672 
, -17.32 -17.82 -17.787 

(59,56) f l. 85 1. 28 1. 312 
(-18.55 -19.33 -19.25 

(58,55) { 3.63 2.85 2.93 
-19.41 - 20.50 - 20. 34 

(57,54) 
j 5.16 4.14 4.28 
1-20.04 -21.44 - 21. 22 a 

aLast threefold cluster. 

J. Chern. Phys., Vol. 69, No. 11, 1 December 1978 



Harter, Patterson, and Galbraith: Level cluster patterns in spherical top molecules 4905 

TABLE IX. Examples of (J = 60) fourfold 11 cluster energies. 
Comparison is made between approximate values [see Eqs. 
(32)-(36) and Table V) and exact computer produced values for 
g= 10-3 (12/7)1/ 2• 

n WO Wi W2 W(exact) 

111+ 59) 14.28 14.61 14.528 

111+ 58) 13.57 14.23 14.131 

1111- 61) 14.28 14.67 14.84 

1111+ 57 ) 12.86 12.47 13.30 13.168 

,I fT_ 60) 13.57 14.48 15.06 

1111+ 56) 12.17 11. 26 12.36 12.244 

,Ill_59) 12.86 14.33 15.29 

(111+ 55) 11.50 10.03 11.48 11.353 

J I 11_ 58) 12.17 14.19 15.49 

(I 11. 54) 10.83 8.81 10.62 10.504 

,111_ 57) 11.50 14.07 15.70 

'I 11+ 53) 10.18 7.60 9.85 9.704 

{' 11. 56) 10.83 13.95 15.89 

I 11+ 52) 9.53 6.42 9.15 8.961 

y =- -12(n - 2) + {144(n _ 2)2 

+ 25{(J + n + l)(J - n + 3)[J 2 - (n - 2)2l}}1!2 , (35) 

x=-5[(J +n -l)(J +n - 2)(J - n + 3)(J -n + 2)]112 • 

As in the threefold case, we can now use perturbation 
theory to calculate the second-order results as follows: 

(2)() (1)() 1(~nIHln*>12 1(~n-41H1ni>12 
Wi n =- Wi n + W!1J(n) + 2Wo(n) + W!1l(n) + 2Wo(n _ 4) 

(1)() 81 J..I.±W1(n) 1 2 8Iv*W1(n-3)1 2 

=- Wi n + W!1l(n) + 2Wo(n) + W!1J(n) + 2Wo(n - 4) 

(36) 
where again we set g =- (12/7)112. The first and second
order results are compared with the exact eigenvalues 
in Table IX. Note that for perturbed I II+n - 4> states the 
first and second-order corrections to the energy nearly 
cancel each other so that, 

(37) 

Thus the zeroth-order energies in Fig. 3 are very 
nearly correct. Furthermore, the energies for the per· 
turbed I II.n> states are raised beyond the crossover for 
threefold ~ state and hence are not good cluster states. 
We may therefore ignore the I II.n> states (they are 
crossed out in Fig. 3) and explain the fourfold II clus
ters entirely in terms of the I II.n - 4> states. Thus none 
of the fourfold II clusters occur in pairs as they did for 
the threefold II clusters. 

V. WC-BOA CLUSTERS AND LEVEL CORRELATIONS 

It is interesting to vary BI; for constant g to test the 
validity of our cluster approximations for the octahedral 
level splittings of v3 excited states (T2 and T 1u modes) 
with high angular momentum. Such splittings reveal 

striking and complicated level or cluster crossings. 
For each J, the separate branches of good N =-J + 1, J, 
and J - 1 will be rearranged to form, as BI; decreases, 
the ~ and II patterns of Sec. IV. 

This rearrangement is clearly shown in Fig. 4 where 
HM has been diagonalized in a J =- 60 cluster basis for 
varying BI; and g=-mtf (0.001). Only the 3x3 diago-
nal submatrices (for which fl.n =- 0) of the octahedral ten-

SYMMETRIC TOP DIAGONALIZATION 
100 

J=60 
80 

60 

>-
(,!) 

0:: 
w 
z 
w 

-IOOL-__ L-__ L-__ L-__ L-__ ~ __ ~ __ ~ __ ~ __ ~~ 

>
(,!) 

0:: 
w 
Z 
w 

-0.50 -0.40 - 0.30 - 0.20 -0.10 0 0.10 0.20 0.30 0.40 0.50 

SYMMETRIC TOP DIAGONALIZATION 

B~ 
-40L-__ L-__ L-__ L-__ ~ __ ~ __ ~ __ ~ __ ~ __ ~~ 

-0.20 -0.16 -0.12 -0.08 -0.04 0 0.04 0.08 0.12 0.16 0.20 

FIG. 4. (a) Threefold and fourfold cluster splitting of the J 

= 60 "3 excited state found by diagonalizing H.\f[Eq. (3a») in a 
cluster basis. Only the 3x3 submatrices of W2(rot)xV(vib»)4 
for which Iln = 0 in Tables I, II or IV, V have been included in 
diagonalization. Here Bt is varied and g=(l2/7)1/ 2(0. 001). On 
the right and left where I Btl »g, the WC approximation is 
valid, and we have labeled the clusters for the P, Q, and R 
branches. (b) Expanded view of (a) in the region where the BOA 
approximation is valid. 
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EXACT DIAGONALIZATION J = 60 
lOOr---'---'---~~~~-T~~~~~~~--'---' 

80 

o 
20111. 5 0 -~ .... 

z 
W -20 

-80 

-100 I 1 
-0.50 -0.40 -0.30 -0.20 -0.10 0 0.10 0.20 0.30 0.400.50 

EXACT DIAGONALIZATION J =60 

2 

16 

8 
>-
(!) 
a:: 0 w 
z 
w 

-8 

-16 

-24 

-32 

_40L-__ L-__ ~ __ ~ __ -L __ -L __ ~ __ ~ __ ~ ____ L-~ 

-0.20 -0.16 -0.12 -0.08 -0.04 0 0.04 0.08 0.12 0.16 0.20 

FIG. 5. (a) Octahedral splitting of the J = 60 1'3 excited state 
found by diagonalizing HM [Eq. (3a)] in a full octahedral basis. 
Again. B/; is varied andg=(12/7)!/2 (0.001). (b) Expanded 
view of (a). (Compare the B/; = 0 values with Fig. 3.) 

sor (see Tables I, II, and IV, V) have been used in the 
diagonalization. (The diagonal submatrices in Tables 
I and II are in the WC cluster basiS, while the diagonal 
submatrices in Tables IV and V are in the BOA cluster 
basis. Diagonalizing HM in either An=O cluster sub
basis leads to the same results.) One can see in Fig. 4 
that the threefold and fourfold ll. and II _ clusters are not 
separated as much as they should be at m; = O. (Recall 
Fig. 3.) This is because the symmetric top approxima
tion ignores the An =± 3 and An =± 4 interactions. 

In Fig. 5 we show the octahedral splitting of the J = 60 
113 excited state where we have diagonalized HM in the 

full octahedral basis. We see that the clustering be
havior of the octahedral terms for varying B1; in Fig. 5 
is qualitatively reproduced by Fig. 4. Indeed, on the 
far right and left where I B1; I »g, the P, Q, and R clus
ters in Fig. 4a are quite accurate. This is the region 
where the "dominant approximation" is valid so that the 
WC diagonal submatrices in Table I give accurate re
sults. Also, for I B1; I - 0 the L: clusters in Fig. 4b are 
quite accurate. Again, this is because the BOA diagonal 
submatrices in Tables IV and V correctly describe L: 
clustering as shown in Sec. IV. 

An interesting feature of Fig. 5 which is qualitatively 
reproduced in Fig. 4 is the convergence of threefold and 
fourfold clusters for each of the R, Q, and P branches. 
These are extremely complicated regions where the 
clusters in each P, Q. and R branch recombine to form 
L: and n threefold and fourfold clusters, and they can 
only be explained by including the off-diagonal subma
trices in Tables I, II or IV, V where An = ± 3 or ± 4 for 
threefold or fourfold clusters, respectively. The oc
currence of these convergences in an actual molecule 
giving rise to such a remarkable spectral "signature" 
would certainly help in making line aSSignments. So 
also would the "lone" II + threefold cluster which has an 
energy which varies linearly with B1;! 

The convergence of the three- and fourfold clusters 
occurs in an intermediate region where the tensor split
ting is approximately equal to the Coriolis splitting. 
The tensor splitting may be found in the WC approxima
tion from the diagonal N =J + 1 matrix element in Table 
I. Thus, in the cluster crossing region we have 

g(7/12)1!2{[6(J + 2)(J + l)J(J -1) - 10n2(6J2 + 6J - 5) 

+ 70n411(2J + 2)(2J + 1)} - 2B1;J . (38) 

For the highest cluster (n =J) and for large J we have 

4g{7/12)1f2J2-2B1;J, 

or 

(39) 

For g=(12/7)1I2(0.OOl) and J=60 as in Figs. 4 and 5, 
the intermediate region occurs for B1; - 0.12 as shown. 
Methane (CH4), for example, would fall in this region at 
an angular momentum J - 48 which is too high to be ob
served at room temperature because of the Boltzmann 
factor. We should emphasize that, although we are un
aware of any T2 or T1u tetrahedral or octahedral vibra
tional spectra belonging to the intermediate or BOA re
giOns of Figs. 4b and 5b, there is nothing "unphysical" 
about them. Furthermore, it is likely that the parame
ters for triply degenerate vibrational modes for over
tones or combination tones will lie within these regions. 

Some extraordinary features in the BOA region have 
been found by plotting the graphs in color. By assigning 
three primary colors red, green, and violet to the three 
types A, E, and F of tetrahedral species, one can iden
tify the chromatic mixtures of colors associated with 
various kinds of clusters. Close examination of the 
cluster intersections reveals beautiful interaction ef
fects between primary species wherein equivalent types 
tend to "repel" each other. Furthermore, a heretofore 
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unobserved type of "giant" cluster (At + E + F t + 2F2) 

and (A 2 + E + 2Ft + F 2) is seen for intermediate values of 
B?;, i. e., for 0.02 < I B?;i <0.16 when g=O. 001v'!277 
(see Fig. 5b). As shown in Ref. 4 these are twofold 
clusters! Normally, twofold axes are not stable rota
tion axes, and therefore the energy levels corresponding 
to twofold rotation do not cluster. In the regions of high 
I B?; I (see Fig. 5a) and also at (B~ = 0) (see Fig. 3) un
clustered twofold energy levels serve as "boundaries" 
between regions of three- and fourfold clusters. How
ever, in the intermediate regions (0.02 < I B~ I < 0.16; 
see Fig. 5b) it appears that the extreme twofold clusters 
are extensions of the boundaries between three- and 
fourfold clusters on either side. Also, it appears that 
the boundaries of twofold cluster regions are extensions 
of extreme three- and fourfold cluster trajectories. In 
fact. the boundaries are seen to be the eigenvalues for 
n =J + 1, J, and J - 1 of the (3 x 3) submatrices of H M 

[Eq. (3a)] computed using Tables IV, V and VI. The 
n = 59, 60, and 61 trajectories for three- and fourfold 
cases are plotted in Fig. 4. Comparison with Fig. 5 
shows that they are indeed boundaries of different clus
ter regions including those of the extraordinary twofold 
clusters. 
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